Course Syllabus

1. Program of Study Bachelor of Science in Plant Science Faculty Science

2. Course Code SCPL 311 Course Title Plant Physiology I

Number of Credits 3 (2-3) (Lecture-Lab)
Prerequisite SCPL 303 or SCPL 304
Type of Course Compulsory course
Session Second semester / 2018

7. Course Conditions -8. Course Description

Absorption and translocation of water and solutes, transport process, water balance of the plant, mineral nutrition, phloem translocation, photosynthesis, respiration and stress physiology

9. Course Objective(s)

After successful completion of this course, students will be able to

- 9.1 understand the relationship of water, soil and atmosphere on plant growth and development
- 9.2 understand the role of transportation of water and solutes during life cycle
- 9.3 understand the mechanism and function of photosynthesis and respiration
- 9.4 understand the physiological responses of plant grown under stress condition

10. Course Outline

Time: Mon; 9.30-12.30; lab. hour

Mon; 12.30-15.30; lecture hour

Room: N300

Date	Wk	Topic		Instructor
		Lecture	Lab	
14 Jan	1	Introduction, concept in plant physiology	Nutrient use in Hydroponic; VDO	Aussanee, TA
		Mineral nutrition I : Kind and its activity		
21 Jan	2	Mineral nutrition II : Deficiency, solute transport	Preparing nutrient solution for culture; VDO	Aussanee, TA
28 Jan	3	Plant & water relations, Water translocation I	Estimation of water potential in tuber	Ngarmnij, TA
4 Feb	4	Water translocation II	Estimation of water potential in flower	Ngarmnij, TA
11 Feb	5	Translocation in phloem: Mechanism,	Knowledge use; reverse translocation for high	Aussanee, TA
		assimilation and partitioning	productivity	
18 Feb	6	1st Exam (mineral, water, translocation in xylem)		Ngarmnij, TA
25 Feb	7	Photosynthesis: The light dependent reactions	Separation of chloroplast pigments	Ngarmnij, TA
4 Mar	8	Photosynthesis: The light dependent and	Effect of light intensity on photosynthesis rate	Ngarmnij, TA
		independent reactions		
11 Mar	10	Photosynthesis: The light independent reaction	Effect of CO ₂ on photosynthesis	Ngarmnij, TA
18 Mar	11	2nd Exam (photosynthesis & translocation in phloem)		Aussanee, TA
25 Mar	12	Respiration & electron transport I	Cellular respiration in plant; VDO	Ngarmnij, TA
1 Apr	13	Respiration & electron transport II	Estimation of CO2 compensation points and	Ngarmnij, TA
			Anaerobic respiration: alcoholic fermentation	
8 Apr	14	Holidays (No class)		Ngarmnij, TA
22 Apr	15	Stress physiology: Stress factors, Plant adaptation	Stress physiology: study case on algae for oil	Aussanee,
			production (Metha)	Metha, TA
29 Apr	16	Photosynthesis characters in plant factory	Global warming effect (Student Presentation)	Kriengkrai,
		condition (Kriengkrai)		Aussanee, TA
6 May	16	Holidays (No class)		
13 May	17	3rd Exam (respiration & stress)		Aussanee, TA

11. Teaching Method (s) lecture tutorial problem solving self-study

12. Teaching Media lecture note, problem sets

13. Measurement and Evaluation of Student Achievement

Student achievement is measured and evaluated by

- 13.1 the ability to predict general plant response from the effects of water and solutes
- 13.2 the ability in analyzing plant symptoms that related with the nutritional effect
- 13.3 the ability to apply the knowledge of photosynthesis, respiration and water relationship on plant production Student achievement will be graded according to the faculty and university standard using the symbols: A, B+, B, C+, C, D+, D, and F.

Students must have attended at least 80% of the total class hours of this course.

14. Course Evaluation

- 14.1 Evaluate as indicated in number 13 above.
- 14.2 Evaluate student' satisfaction towards teaching and learning of the course using a questionnaire

15. Reference(s)

- Tiaz, L. And E. Zeiger. 2002. Plant Physiology, 3rd ed. Sinauer Associates, Inc.
- Hopkins, W.G. and N.P. A. Huner. 2004. Introduction to Plant Physiology, 3rd ed. John Wiley & Sons, Inc.
- Ridge, I (ed). 2002. Plants. Oxford University Press.

16. Instructor(s)

- Dr. Aussanee Pichakum, SCPL, MU
- Dr. Ngarmnij Chuenboonngarm, SCPL, MU
- Dr. Metha Meetham, SCBI, MU
- Dr. Kriengkrai Mosaleeyanon, BIOTEC

17. Course Coordinators:

- Dr. Aussanee Pichakum (<u>aussanee.pic@mahidol.ac.th</u>)
- Dr. Ngarmnij Chuenboonngarm (<u>ngarmnij.chu@mahidol.ac.th</u>)